Informatics Update: Progress Towards Precision Cancer Surveillance

Eric B. Durbin, DrPH, MS

Assistant Professor, Division of Biomedical Informatics, College of Medicine Director, Cancer Research Informatics Shared Resource Facility, Markey Cancer Center Director, Kentucky Cancer Registry University of Kentucky

> Thirty-second Annual Advanced Cancer Registrars Workshop August 16, 2018

Topics to be Covered

- Growing evidence supporting precision medicine in cancer
- Implications for cancer surveillance and public health
- KCR informatics initiatives that are enhancing precision medicine data capture in registries
- Using precision cancer surveillance data
- Future plans

Growing Evidence Supporting Precision Medicine Initiatives

Dictionary	
------------	--

precision medicine

Q

pre-ci-sion med-i-cine

noun

medical care designed to optimize efficiency or therapeutic benefit for particular groups of patients, especially by using genetic or molecular profiling.

"current research is focused around precision medicine—classifying patients on their tumor's molecular changes"

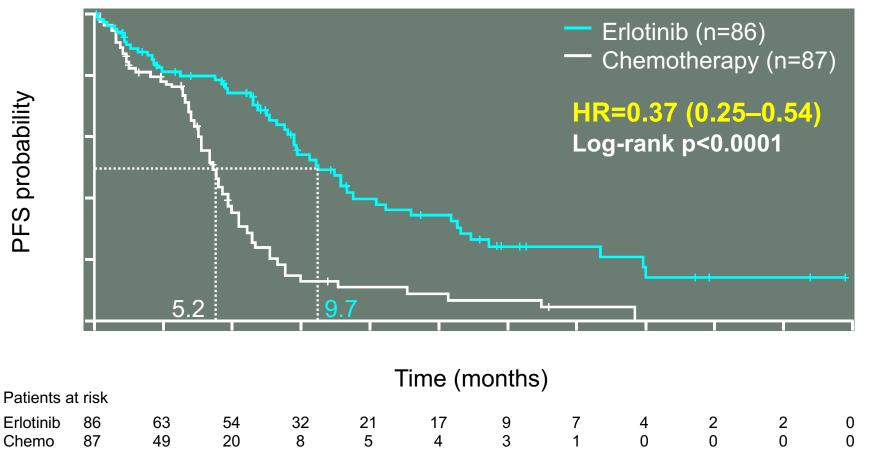
Translations, word origin, and more definitions

Feedback

EURTAC Study Design

- Erlotinib 150mg/day Chemonaïve Stage IIIB/IV NSCLC Stratification EGFR exon 19 deletion or Mutation type ECOG PS (0 vs 1 vs 2) exon 21 L858R mutation ECOG PS 0–2 (n=174) x 4 cycles* Secondary endpoints Primary endpoint
- Progression-free survival (PFS)
 - interim analysis planned at 88 events
- Patients enrolled between 2007 and 2011

- Platinum-based doublet chemotherapy q3wks
 - Objective response rate
 - Overall survival (OS)
 - Location of progression
 - Safety
 - EGFR mutation analysis in serum
 - Quality of life

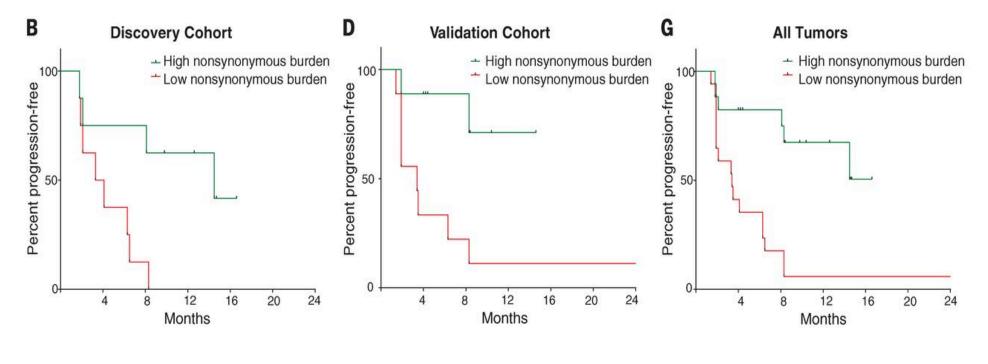


PD

PD

Slide courtesy of Dr. Jill Kolesar

EUROTAC: First-line Treatment in EGFR Mutation Positive NSCLC

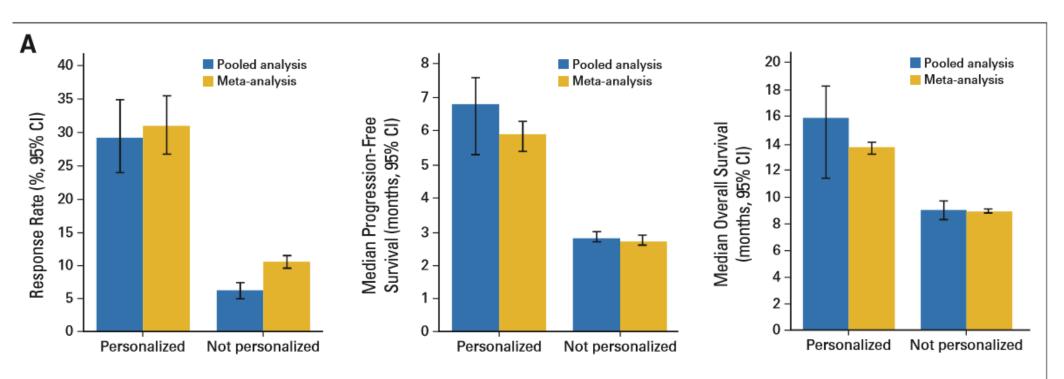


Slide courtesy of Dr. Jill Kolesar

Rosell R, et al. Proc ASOC 2011, #7503

Immuno-therapy with PD-1 Targeted Pembrolizumab

Nonsynonymous mutation burden associated with clinical benefit of anti–PD-1 therapy in non-small cell lung cancer.



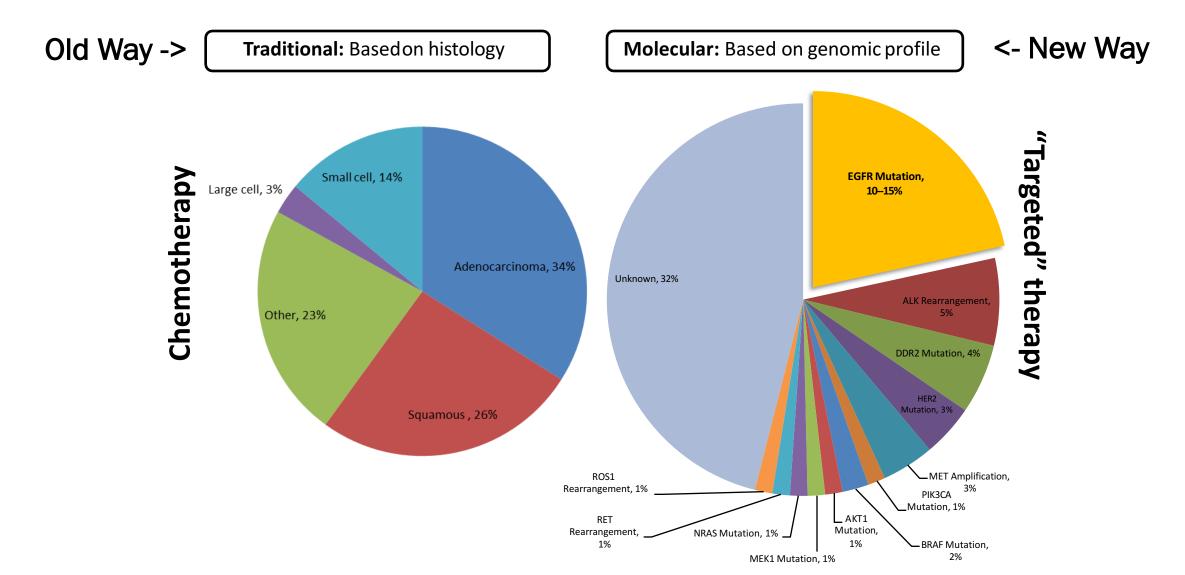
Naiyer A. Rizvi et al. Science 2015;348:124-128

Study Conclusions: More Mutations Predict Better Efficacy

Pooled Analysis of 570 Phase II Trials of Single Agent Targeted Therapies

Schwaederle, MM, et al. JCO 2015

Slide courtesy of Dr. Jill Kolesar


The Precision Medicine Paradigm Shift

Implications for Cancer Surveillance and Public Health

Shifting Paradigm in Lung Cancer Treatment

Role of Precision Cancer Surveillance

- 1. Capture data that accurately measures the implementation and use of precision medicine in clinical settings
- 2. Evaluate the adoption of precision medicine and impact on the population
- 3. Leverage population-based data to ensure maximum benefit to the entire population through evidence-based cancer prevention and control
- 4. Leverage population-based data to accelerate further advances in precision medicine
 - a) Basic research
 - b) Clinical research
 - c) Population research

} Translational Science

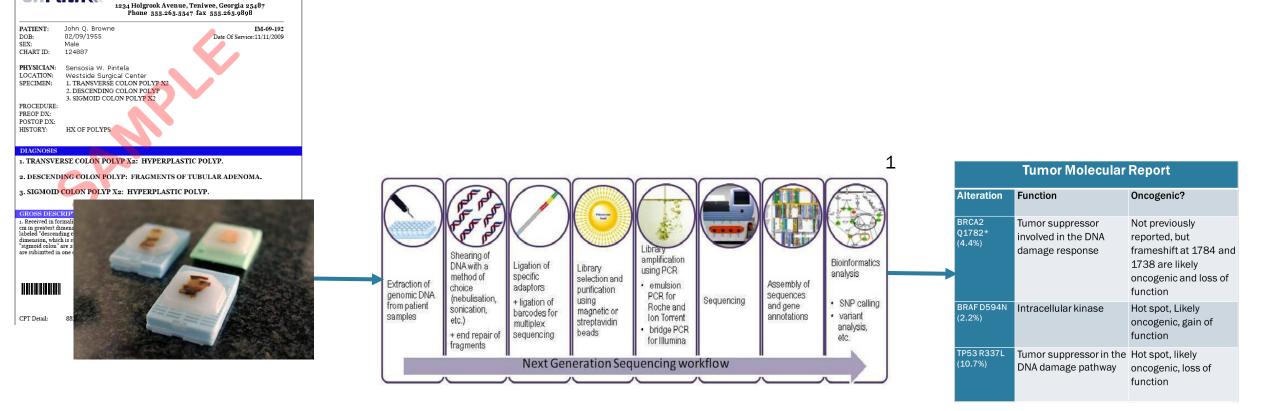
From Precision Medicine to Precision Cancer Surveillance

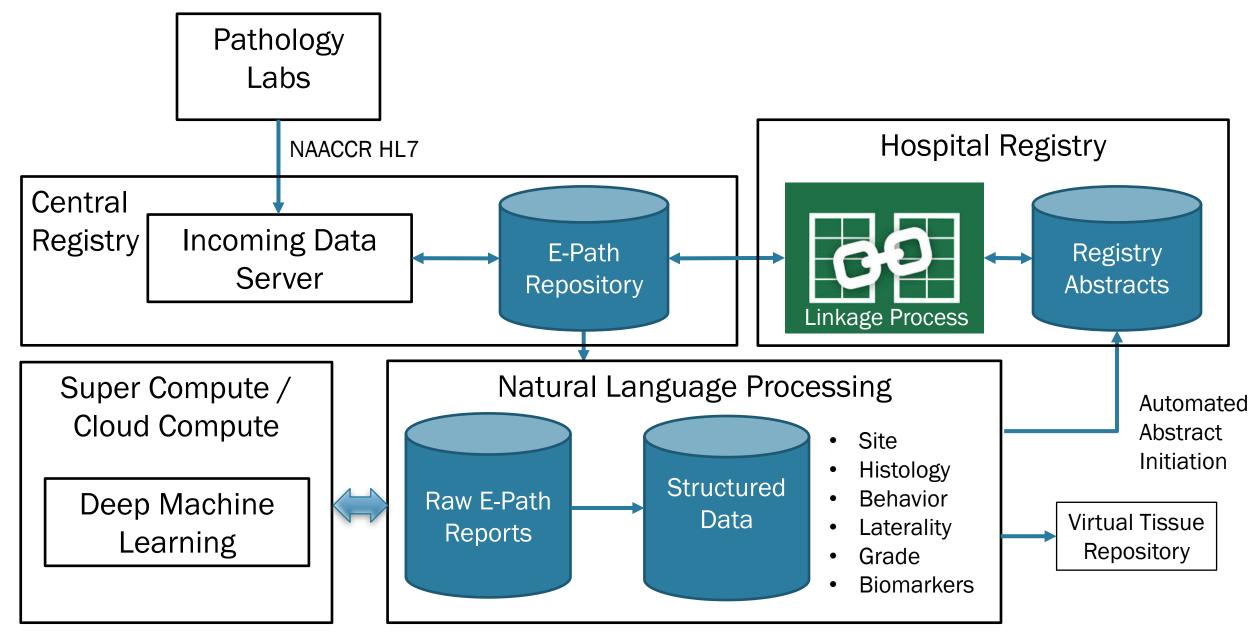
pre · ci · sion sur · veil · lance

Cancer surveillance designed to optimize efficiency in medical care or predict therapeutic benefit for particular groups of patients, especially by using genetic or molecular profiling across entire populations of patients

"Current KCR research is focused around precision surveillance – how to develop informatics methods to deliver efficiencies in registry operations in order to capture additional information so that we may classify <u>all</u> cancer patients by their tumor's molecular changes"

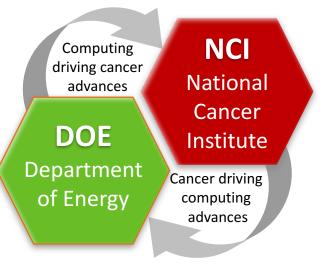
Capturing the Data (The Very Big Data)


Implications for Hospital Cancer Registries


onPath«

INTERNAL MEDICINE SPECIALISTS, INC.

¹Next generation sequencing applications for breast cancer research - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/Overview-of-the-main-steps-in-Next-Generation-Sequencing-workflow_fig1_282061980 [accessed 13 Aug, 2018]


Electronic Pathology Data Flow at KCR

KCR Collaborating with National Cancer Institute and Department of Energy (DOE) on Major NLP Initiative

- KCR one of only four SEER registries chosen to participate
- Moonshot Initiative
 - Exascale CAncer Distributed Learning Environment (CANDLE)
- Pilot 3: Population Information Integration, Analysis, and Modeling
- Specific Aim: Deep NLP for Information Capture
 - Advanced machine learning for scalable patient information capture from unstructured clinical reports to semi-automate SEER data capture

DOE-NCI partnership to advance exascale development through cancer research

Tumor-Level Analysis: 2-fold cross-validation 2004-2015 data (59,427 cases)

Pilot 3

KCR/Markey Team at the Oakridge National Lab SUMMIT: Most Powerful Supercomputer on Earth

Capturing Biomarkers

Natural Language Processing for Electronic Pathology Reports

Capturing Molecular Biomarkers the Old-fashioned Way: Manual Abstraction of Site Specific Factors

Brain and CNS

- Brain molecular markers
- Brain & CNS chromosome 1p and 19q
- MGMT
- Breast
 - Ki-67
 - Oncotype DX
- Colon and Rectum
 - KRAS
 - Microsatellite Instability (MSI)
- Uveal Melanoma
 - Chromosome 3 and 8q status
- Oropharynx
 - HPV Status

NLP to Enhance Automated Capture of Biomarkers

- NCCN Guidelines for EGFR and ALK Testing in Lung Cancer
 - EGFR
 - Epidermal growth factor receptor (EGFR) mutations cause new cancer cells to form quickly
 - Testing advised for metastatic lung adenocarcinomas, large-cell lung carcinomas and unknown subtypes
 - ALK
 - Anaplastic lymphoma kinase (ALK) gene re-arrangements makes an overactive ALK surface receptor that helps lung cancer cells grow
 - <u>Testing advised</u> for metastatic lung adenocarcinomas, large-cell lung carcinomas and unknown subtypes

KCR Collaboration with the SEER Seattle Puget-Sound Registry and the Fred Hutchinson Cancer Research Center

Hypothesis

- NLP can be used to derive ALK and EGFR testing results from non-small cell lung cancer E-Path reports

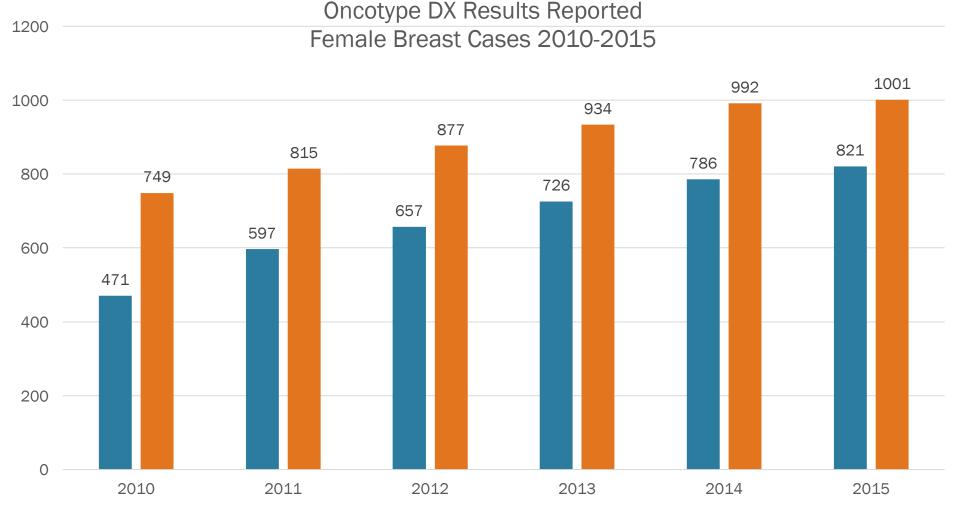
Study Methods

- Each team selected 1000 random E-Path reports from their respective registry
 - Seattle ended up selecting over 3500 reports
- Lung cancer oncologists reviewed all E-Path reports to identify reports indicating ALK and EGFR testing and reporting of testing results
- Each team developed a machine-learned NLP model to derive tests and test results from E-Path reports
- Model tested on other team's cohort of E-Path reports

Study Results

Seattle and Kentucky achieved excellent results identifying EGFR and ALK testing was ordered

- F-Scores 96.0 98.0
- Seattle performed better identifying positive test results
 - Seattle ALK/EGFR Positive Results F-Scores 97.0
 - Kentucky EGFR Positive Results F-Score 60.0
- Models did not perform well on the other site's E-Path reports
 - Seattle on KY Data: ALK/EGFR F-Scores 36.0, 4.0, respectively
 - Kentucky on Seattle Data: results pending
- Conclusions
 - Testing results not routinely reported
 - Pathology reporting terminology for biomarkers differs by region
 - Models perform better when trained on region specific data
 - More research needed



Capturing Molecular Biomarkers at Scale Oncotype DX Linkages

NGS Multi-gene Panel Reporting

Results of Oncotype DX Linkage 32% Increase in Completeness

CPDMS LINKAGE

Capturing Next Generation Sequencing (NGS) Multi-Gene Panel Biomarkers

- Clinical use of multi-gene panel sequencing of tumors is increasing rapidly
 - Molecular Tumor Boards
- Common service providers
 - Foundation Medicine
 - Caris Life Sciences
 - Guardant Health
 - OncoDNA
 - Tempus
 - Oncology Research Information Exchange Network (ORIEN) [Research]
 - Academic Clinical Labs
- Reports include mutations (both significant and of unknown significance)
 - Several providers are also willing to share raw data files (BAM)

Foundation Medicine

FoundationOne CDx

- Next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alternations (indels), and copy number alterations (CNAs) in 324 genes
- Select gene rearrangements
- Genomic signatures
 - Microsatellite instability (MSi)
 - Tumor mutation burden (TMB)
- Uses DNA isolation from formalin-fixed paraffin embedded (FFPE) tumor tissue specimens
- FDA approved on November 30, 2017
- CMS coverage simultaneously proposed
 - Medicare beneficiaries with recurrent, metastatic or advanced state IV cancer, not previously NGS tested

FoundationOne CDx

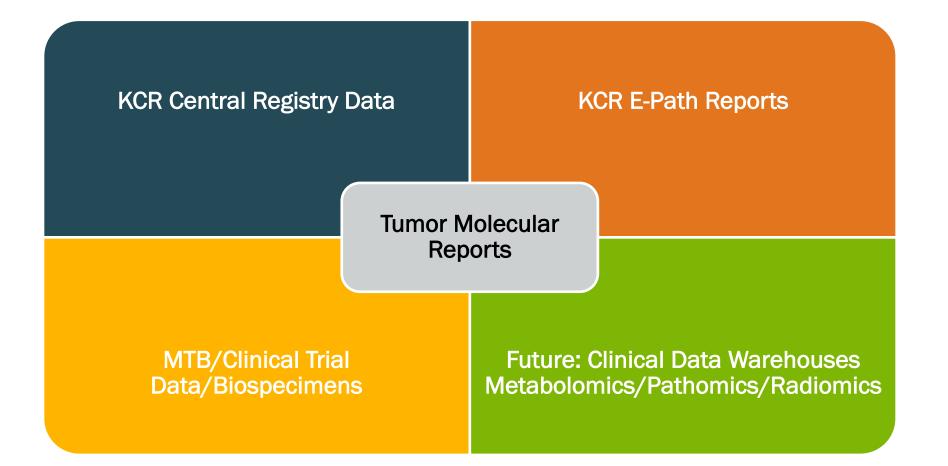
Table 1: Companion diagnostic indications

INDICATIONS	DIOMARKER	FDA-APPROVED THERAPY*		
	EGFR exon 19 deletions and EGFR exon 21 L858R alterations	Gilotrif® (afatinib), Iressa® (gefitinib), or Tarceva® (erlotinib)		
Non-Small Cell Lung Cancer	EGFR exon 20 T790M alterations	agrisso® (osimertinib)		
(NSCLC)	ALK rearrangements	Alecensa®(alectinib), Xalkori® (crizotinib), or Zykadia® (ceritinib)		
	BRAF V600E	Tafinlar® (dabrafenib) in combination with Mekinist® (trametinib)		
	BRAF V600E	Tafinlar® (dabrafenib) or Zelboraf® (vemurafenib)		
Melanoma	BRAF V600E or V600K	Mekinist® (trametinib) or Cotellic®(cobimetinib), in combination with Zelboraf®(vemurafenib)		
Breast Cancer	ERBB2 (HER2) amplification	Herceptin® (trastuzumab), Kadcyla® (ado-trastuzumab-emtansine), or Perjeta® (pertuzumab)		
	KRAS wild-type (absence of mutations in codons 12 and 13)	Erbitux® (cetuximab)		
Colorectal Cancer	<i>KRAS</i> wild-type (absence of mutations in exons 2, 3 and 4) and <i>NRAS</i> wild-type (absence of mutations in exons 2, 3 and 4)	Vectibix® (panitumumab)		
Ovarian Cancer	BRCA1/2 alterations	Rubraca® (rucaparib)		

* Tarceva® is the registered trademark of OSI Pharmaceuticals, LLC. Zelboraf®, Herceptin®, Perjeta®, Kadcyla®, and Cotellic® are registered trademarks of Genentech, Inc. Gilotrif® is a registered trademark of Boehringer Ingelheim International GmbH. Iressa® and Tagrisso® are registered trademarks of the AstraZeneca group of companies. Xalkori® is a registered trademark of Pfizer Inc. Zykadia®, Tafinlar®, and Mekinist® are registered trademarks of Novartis AG Corporation Switzerland. Erbitux® is a registered trademark of ImClone LLC, a wholly owned subsidiary of Eli Lilly and Company. Alecensa® is a registered trademark of Chugai Seiyaku Kabushiki Kaisha. Vectibix® is a registered trademark of Immunex. Corporation. Rubraca® is a registered trademark of Clovis Oncology, Inc.

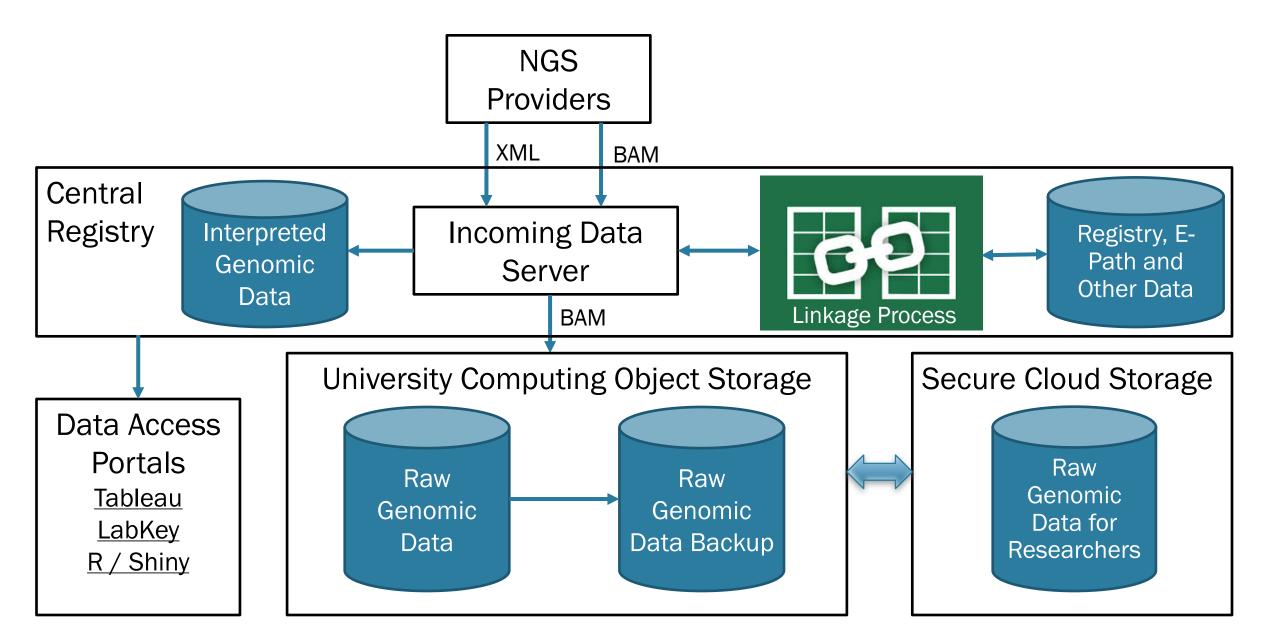
Current Gene List²

Genes with full coding exonic regons included in FoundationOne CDx for the detection of substitutions, insertion-deletions (indels), and copy-number alterations (CNAs).


ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	C/C	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EP300	EPHA3	EPHB1	EPHB4
ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2	FAM46C

Poll: Who is interested in reviewing molecular reports and coding the mutations manually?

		_					-	
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	МҮС	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2	PARK2
PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2	2)	PDGFRA
PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STK11	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1 (MMSET)	WHSC1L1	WT1
XPO1	XRCC2	ZNF217	ZNF703					



Integration of Molecular, Registry, Pathology, MTB, Clinical Trial, Biorepository, Other Data

Integrated data to support Molecular Tumor Boards, Population Health and Research in Precision Medicine

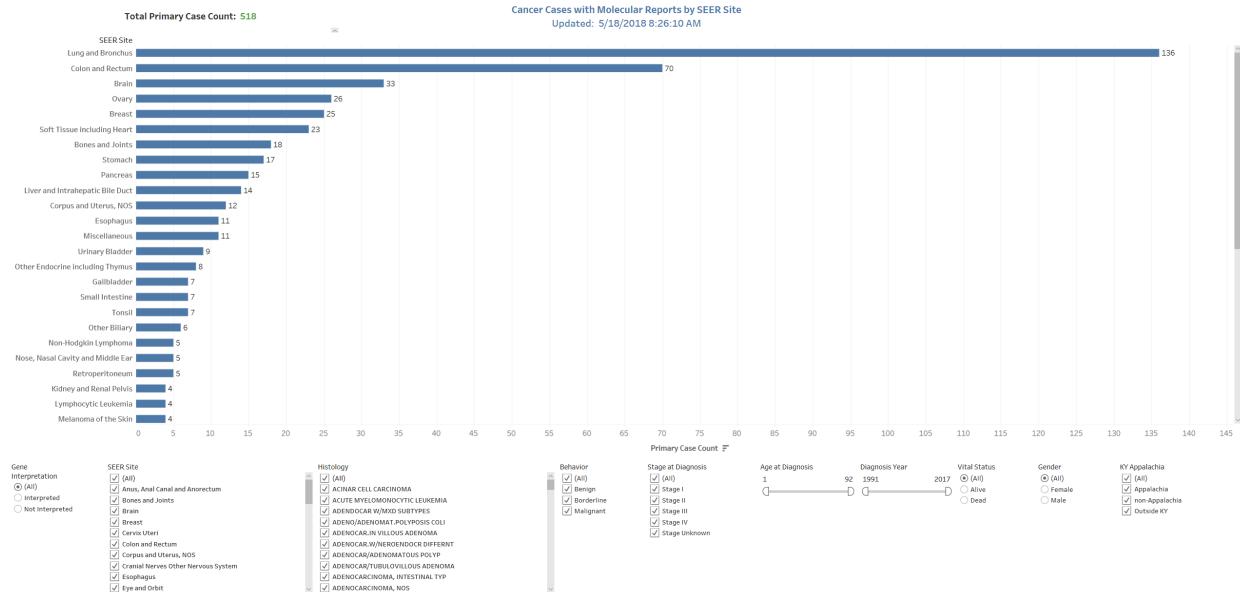
Genomic Data Flow into the Central Registry

Additional Data Needed from Hospital Registrars

Contextual information about specimen sent for testing

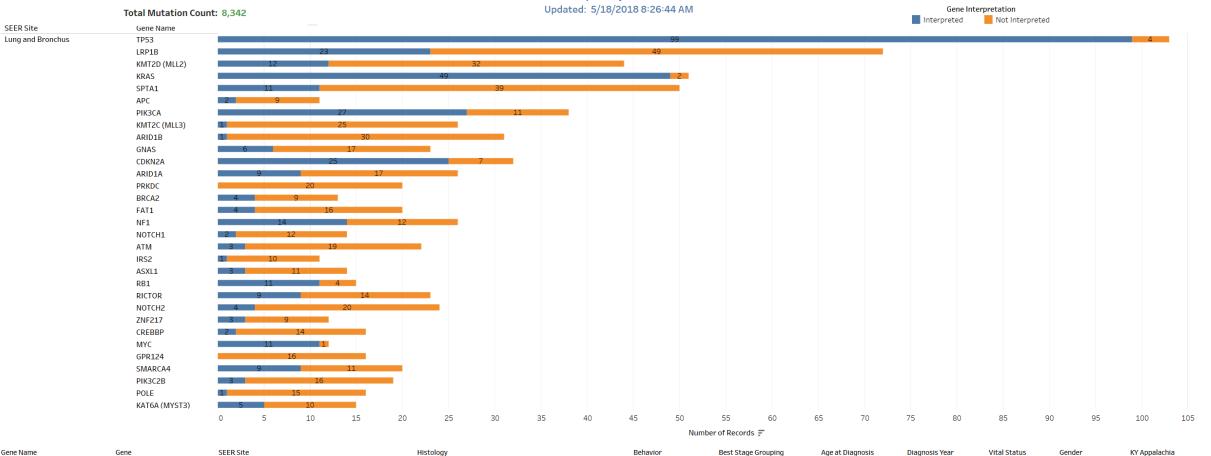
- Primary site?
- Recurrence?
- Metastatic lesion?
- Timing/State of Disease
 - At time of diagnosis?
 - Before or after chemotherapy?
 - Following recurrence?
 - How long after remission?
- Additional treatment details
 - Specific targeted therapy
 - Selected from dropdown (searchable)
- Treatment response to targeted therapy

Population Health and Research


Using population-based molecular report data

 \leftarrow \rightarrow \leftarrow \Box_{\bullet} \Box_{\bullet}

By Cancer Site Group By Gene Mutation By Cancer Site Group and Gen... Reference



 $\leftarrow \rightarrow \leftarrow \Box \Box$

By Cancer Site Group By Gene Mutation By Cancer Site Group and Gen... Reference

Cancer Cases with Molecular Reports by SEER Site and Gene Mutation Counts

Gene Name	Gene	SEER Site	Histology	Behavior	Best Stage Grouping	Age at Diagnosis	Diagnosis Y
✓ (AII)	 Interpretation 	✓ (AII)	^ (AII)	^	✓ (AII)	0	92 1991
✓ ABL1	(IIA) (Anus, Anal Canal and Anorectum	✓ ACINAR CELL CARCINOMA	✓ Benign	✓ Stage I	0	D
✓ ABL2	 Interpreted 	✓ Bones and Joints	ACUTE MYELOMONOCYTIC LEUK	EMIA 🗸 Borderline	✓ Stage II	0	
✓ ACTB	Not Interpreted	✓ Brain	✓ ADENDOCAR W/MXD SUBTYPES	✓ Malignant	✓ Stage III		
✓ ACVR1B		✓ Breast	✓ ADENO/ADENOMAT.POLYPOSIS	COLI	✓ Stage IV		
✓ AKT1		✓ Cervix Uteri	ADENOCAR.IN VILLOUS ADENON	A	✓ Stage Unknown		
✓ AKT2		✓ Colon and Rectum	ADENOCAR.W/NEROENDOCR DI	FFERNT			
🗸 АКТЗ		✓ Corpus and Uterus, NOS	ADENOCAR/ADENOMATOUS POL	YP			
✓ ALK		✓ Cranial Nerves Other Nervous System	ADENOCAR/TUBULOVILLOUS AD	ENOMA			
✓ AMER1 (FAM123B)		✓ Esophagus	✓ ADENOCARCINOMA, INTESTINA	LTYP			
✓ APC	~	✓ Eye and Orbit	✓ ADENOCARCINOMA, NOS	~			

Ç []

^

~

2017 (AII)

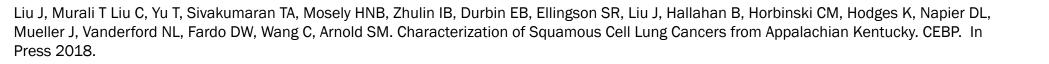
O Dead

Ð Alive (AII)

Female

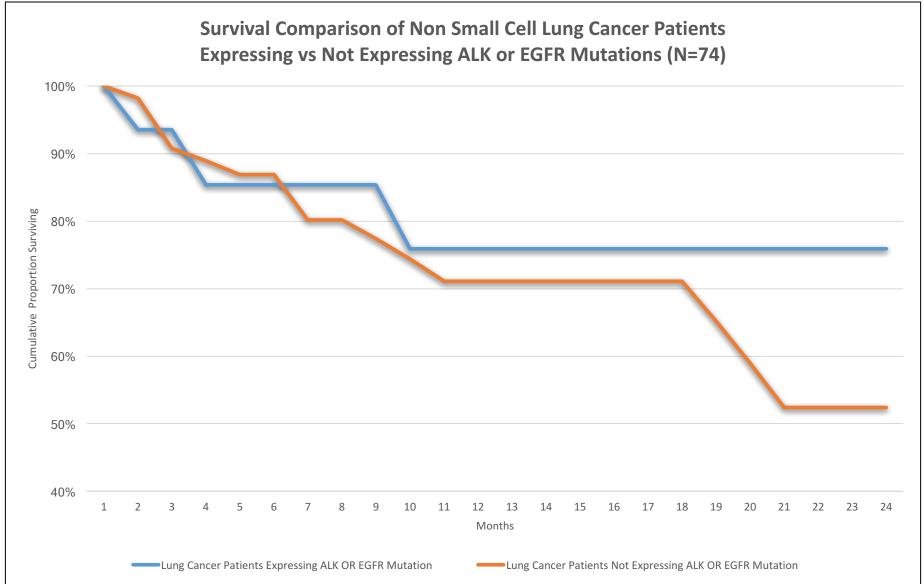
O Male

✓ (All)

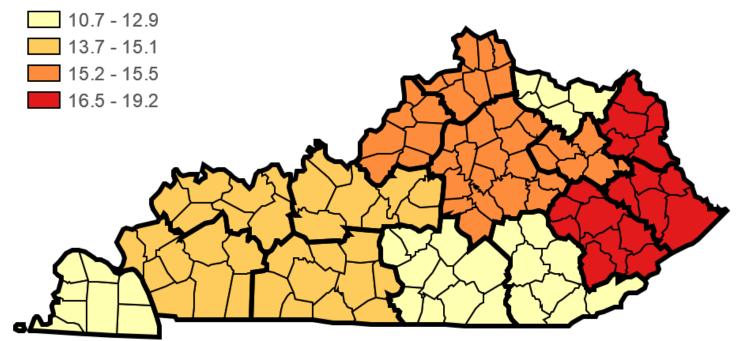

✓ Appalachia

✓ Outside KY

🗸 non-Appalachia


Identifying Molecular Disparities in the Population

- Recent study examined molecular profiles of 51 non-small cell lung cancer in Appalachian Kentucky compared to the Cancer Genome Atlas (TCGA)
- Certain tumor mutations were significantly higher among Appalachian Kentucky patients compared to the U.S.
 - PCMTD1
 - IDH1
- Does this represent a health disparity in Kentucky's underserved population?


Population Measures: How do Gene Mutations Impact Survival?

Mapping Biomarker Data for Cancer Prevention and Control

Age-Adjusted Invasive Cancer Incidence Rates in Kentucky Triple Negative (HR-/HER2-) - Breast, Female, 2011 - 2015 By Area Development District Age-Adjusted to the 2000 U.S. Standard Million Population

Kentucky Rate: 14.8 / per 100,000

All rates per 100,000. Data accessed May 16, 2018. Based on data released Nov 2017. © 2018 Kentucky Cancer Registry.

Conclusions: Precision Cancer Surveillance is a Critical Role for Cancer Registries

- Capture and integration of Next Generation Sequencing (NGS) molecular test results is a major goal of the Kentucky Cancer Registry
- Informatics efforts are developing methods and tools to enhance e-Path reporting and other infrastructures needed to capture data for all patients who are tested
 - Cannot wait for site specific factors to emerge
 - Cancer registrar manual entry of 100s of molecular markers impossible
- Electronic transmissions of standardized molecular test results from NGS service providers is feasible and practical
 - Molecular test report data is no more challenging than electronic pathology reporting
 - Raw data file storage, however, requires more significant technical expertise and storage facilities
- Central cancer registries can be enhanced with **population-based** molecular test data within 2-4 years
- Advances will positively impact clinical decision making and evidence-based cancer prevention and control

Acknowledgements: KCR/Markey Informatics Team

- Software Team
 - Isaac Hands
 - Peter Ransdell
 - Jason Jacob
 - David Rust
 - Roger Chui
 - Clay Campbell
 - Chaney Blu
 - York Dobyns
 - Luan Pham
 - Bront Davis
 - Justin Levens

- Project Management
 - Joseph Mueller
- Systems Team
 - Jenny Gregory
 - John Williams
 - Joel Wheeler
 - Malissa Sullivan
- Faculty
 - Dr. JC Jeong
 - Dr. Sally Ellingson
 - Dr. Rama Kavuluru

Questions/Discussion

- Contact Information:
 Eric B. Durbin, DrPH, MS
 Telephone: 859-218-3182
 E-mail: ericd@kcr.uky.edu
 Web: http://www.kcr.uky.edu
- Funding Acknowledgements
 - Commonwealth of Kentucky
 - University of Kentucky Markey Cancer Center
 - CDC/NPCR/ECC: U58DP005400, U58DP006313
 - NCI/SEER: HHSN261201000131, P30CA177558

Browse cancer incidence and mortality data on your iPad, iPhone, or iPod Touch

